\(\int \sqrt {e x} \sqrt {a+b x^2} (A+B x^2) \, dx\) [786]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 337 \[ \int \sqrt {e x} \sqrt {a+b x^2} \left (A+B x^2\right ) \, dx=\frac {2 (3 A b-a B) (e x)^{3/2} \sqrt {a+b x^2}}{15 b e}+\frac {4 a (3 A b-a B) \sqrt {e x} \sqrt {a+b x^2}}{15 b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {2 B (e x)^{3/2} \left (a+b x^2\right )^{3/2}}{9 b e}-\frac {4 a^{5/4} (3 A b-a B) \sqrt {e} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{15 b^{7/4} \sqrt {a+b x^2}}+\frac {2 a^{5/4} (3 A b-a B) \sqrt {e} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{15 b^{7/4} \sqrt {a+b x^2}} \]

[Out]

2/9*B*(e*x)^(3/2)*(b*x^2+a)^(3/2)/b/e+2/15*(3*A*b-B*a)*(e*x)^(3/2)*(b*x^2+a)^(1/2)/b/e+4/15*a*(3*A*b-B*a)*(e*x
)^(1/2)*(b*x^2+a)^(1/2)/b^(3/2)/(a^(1/2)+x*b^(1/2))-4/15*a^(5/4)*(3*A*b-B*a)*(cos(2*arctan(b^(1/4)*(e*x)^(1/2)
/a^(1/4)/e^(1/2)))^2)^(1/2)/cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)))*EllipticE(sin(2*arctan(b^(1/4)*
(e*x)^(1/2)/a^(1/4)/e^(1/2))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*e^(1/2)*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)
/b^(7/4)/(b*x^2+a)^(1/2)+2/15*a^(5/4)*(3*A*b-B*a)*(cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)))^2)^(1/2)
/cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)))*EllipticF(sin(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)
)),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*e^(1/2)*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/b^(7/4)/(b*x^2+a)^(1/2)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 337, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {470, 285, 335, 311, 226, 1210} \[ \int \sqrt {e x} \sqrt {a+b x^2} \left (A+B x^2\right ) \, dx=\frac {2 a^{5/4} \sqrt {e} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} (3 A b-a B) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{15 b^{7/4} \sqrt {a+b x^2}}-\frac {4 a^{5/4} \sqrt {e} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} (3 A b-a B) E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{15 b^{7/4} \sqrt {a+b x^2}}+\frac {4 a \sqrt {e x} \sqrt {a+b x^2} (3 A b-a B)}{15 b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {2 (e x)^{3/2} \sqrt {a+b x^2} (3 A b-a B)}{15 b e}+\frac {2 B (e x)^{3/2} \left (a+b x^2\right )^{3/2}}{9 b e} \]

[In]

Int[Sqrt[e*x]*Sqrt[a + b*x^2]*(A + B*x^2),x]

[Out]

(2*(3*A*b - a*B)*(e*x)^(3/2)*Sqrt[a + b*x^2])/(15*b*e) + (4*a*(3*A*b - a*B)*Sqrt[e*x]*Sqrt[a + b*x^2])/(15*b^(
3/2)*(Sqrt[a] + Sqrt[b]*x)) + (2*B*(e*x)^(3/2)*(a + b*x^2)^(3/2))/(9*b*e) - (4*a^(5/4)*(3*A*b - a*B)*Sqrt[e]*(
Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)
*Sqrt[e])], 1/2])/(15*b^(7/4)*Sqrt[a + b*x^2]) + (2*a^(5/4)*(3*A*b - a*B)*Sqrt[e]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(
a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(15*b^(7/
4)*Sqrt[a + b*x^2])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 285

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + n
*p + 1))), x] + Dist[a*n*(p/(m + n*p + 1)), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps \begin{align*} \text {integral}& = \frac {2 B (e x)^{3/2} \left (a+b x^2\right )^{3/2}}{9 b e}-\frac {\left (2 \left (-\frac {9 A b}{2}+\frac {3 a B}{2}\right )\right ) \int \sqrt {e x} \sqrt {a+b x^2} \, dx}{9 b} \\ & = \frac {2 (3 A b-a B) (e x)^{3/2} \sqrt {a+b x^2}}{15 b e}+\frac {2 B (e x)^{3/2} \left (a+b x^2\right )^{3/2}}{9 b e}+\frac {(2 a (3 A b-a B)) \int \frac {\sqrt {e x}}{\sqrt {a+b x^2}} \, dx}{15 b} \\ & = \frac {2 (3 A b-a B) (e x)^{3/2} \sqrt {a+b x^2}}{15 b e}+\frac {2 B (e x)^{3/2} \left (a+b x^2\right )^{3/2}}{9 b e}+\frac {(4 a (3 A b-a B)) \text {Subst}\left (\int \frac {x^2}{\sqrt {a+\frac {b x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{15 b e} \\ & = \frac {2 (3 A b-a B) (e x)^{3/2} \sqrt {a+b x^2}}{15 b e}+\frac {2 B (e x)^{3/2} \left (a+b x^2\right )^{3/2}}{9 b e}+\frac {\left (4 a^{3/2} (3 A b-a B)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+\frac {b x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{15 b^{3/2}}-\frac {\left (4 a^{3/2} (3 A b-a B)\right ) \text {Subst}\left (\int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a} e}}{\sqrt {a+\frac {b x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{15 b^{3/2}} \\ & = \frac {2 (3 A b-a B) (e x)^{3/2} \sqrt {a+b x^2}}{15 b e}+\frac {4 a (3 A b-a B) \sqrt {e x} \sqrt {a+b x^2}}{15 b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {2 B (e x)^{3/2} \left (a+b x^2\right )^{3/2}}{9 b e}-\frac {4 a^{5/4} (3 A b-a B) \sqrt {e} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{15 b^{7/4} \sqrt {a+b x^2}}+\frac {2 a^{5/4} (3 A b-a B) \sqrt {e} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{15 b^{7/4} \sqrt {a+b x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.07 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.28 \[ \int \sqrt {e x} \sqrt {a+b x^2} \left (A+B x^2\right ) \, dx=\frac {2 x \sqrt {e x} \sqrt {a+b x^2} \left (B \left (a+b x^2\right ) \sqrt {1+\frac {b x^2}{a}}+(3 A b-a B) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {3}{4},\frac {7}{4},-\frac {b x^2}{a}\right )\right )}{9 b \sqrt {1+\frac {b x^2}{a}}} \]

[In]

Integrate[Sqrt[e*x]*Sqrt[a + b*x^2]*(A + B*x^2),x]

[Out]

(2*x*Sqrt[e*x]*Sqrt[a + b*x^2]*(B*(a + b*x^2)*Sqrt[1 + (b*x^2)/a] + (3*A*b - a*B)*Hypergeometric2F1[-1/2, 3/4,
 7/4, -((b*x^2)/a)]))/(9*b*Sqrt[1 + (b*x^2)/a])

Maple [A] (verified)

Time = 3.07 (sec) , antiderivative size = 238, normalized size of antiderivative = 0.71

method result size
risch \(\frac {2 x^{2} \left (5 b B \,x^{2}+9 A b +2 B a \right ) \sqrt {b \,x^{2}+a}\, e}{45 b \sqrt {e x}}+\frac {2 a \left (3 A b -B a \right ) \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right ) e \sqrt {\left (b \,x^{2}+a \right ) e x}}{15 b^{2} \sqrt {b e \,x^{3}+a e x}\, \sqrt {e x}\, \sqrt {b \,x^{2}+a}}\) \(238\)
elliptic \(\frac {\sqrt {e x}\, \sqrt {\left (b \,x^{2}+a \right ) e x}\, \left (\frac {2 B \,x^{3} \sqrt {b e \,x^{3}+a e x}}{9}+\frac {2 \left (\left (A b +B a \right ) e -\frac {7 B a e}{9}\right ) x \sqrt {b e \,x^{3}+a e x}}{5 b e}+\frac {\left (A a e -\frac {3 \left (\left (A b +B a \right ) e -\frac {7 B a e}{9}\right ) a}{5 b}\right ) \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{b \sqrt {b e \,x^{3}+a e x}}\right )}{e x \sqrt {b \,x^{2}+a}}\) \(276\)
default \(\frac {2 \sqrt {e x}\, \left (5 b^{3} B \,x^{6}+18 A \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, E\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a^{2} b -9 A \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a^{2} b -6 B \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, E\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a^{3}+3 B \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a^{3}+9 A \,b^{3} x^{4}+7 B a \,b^{2} x^{4}+9 a A \,b^{2} x^{2}+2 B \,a^{2} b \,x^{2}\right )}{45 \sqrt {b \,x^{2}+a}\, b^{2} x}\) \(414\)

[In]

int((B*x^2+A)*(e*x)^(1/2)*(b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/45*x^2*(5*B*b*x^2+9*A*b+2*B*a)*(b*x^2+a)^(1/2)/b*e/(e*x)^(1/2)+2/15*a*(3*A*b-B*a)/b^2*(-a*b)^(1/2)*((x+(-a*b
)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(-2*(x-(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(-x/(-a*b)^(1/2)*b)^(1/2)/(b*e*x
^3+a*e*x)^(1/2)*(-2*(-a*b)^(1/2)/b*EllipticE(((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2),1/2*2^(1/2))+(-a*b)^(1/
2)/b*EllipticF(((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2),1/2*2^(1/2)))*e*((b*x^2+a)*e*x)^(1/2)/(e*x)^(1/2)/(b*
x^2+a)^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.24 \[ \int \sqrt {e x} \sqrt {a+b x^2} \left (A+B x^2\right ) \, dx=\frac {2 \, {\left (6 \, {\left (B a^{2} - 3 \, A a b\right )} \sqrt {b e} {\rm weierstrassZeta}\left (-\frac {4 \, a}{b}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right )\right ) + {\left (5 \, B b^{2} x^{3} + {\left (2 \, B a b + 9 \, A b^{2}\right )} x\right )} \sqrt {b x^{2} + a} \sqrt {e x}\right )}}{45 \, b^{2}} \]

[In]

integrate((B*x^2+A)*(e*x)^(1/2)*(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

2/45*(6*(B*a^2 - 3*A*a*b)*sqrt(b*e)*weierstrassZeta(-4*a/b, 0, weierstrassPInverse(-4*a/b, 0, x)) + (5*B*b^2*x
^3 + (2*B*a*b + 9*A*b^2)*x)*sqrt(b*x^2 + a)*sqrt(e*x))/b^2

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 2.38 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.29 \[ \int \sqrt {e x} \sqrt {a+b x^2} \left (A+B x^2\right ) \, dx=\frac {A \sqrt {a} \sqrt {e} x^{\frac {3}{2}} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 \Gamma \left (\frac {7}{4}\right )} + \frac {B \sqrt {a} \sqrt {e} x^{\frac {7}{2}} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {7}{4} \\ \frac {11}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 \Gamma \left (\frac {11}{4}\right )} \]

[In]

integrate((B*x**2+A)*(e*x)**(1/2)*(b*x**2+a)**(1/2),x)

[Out]

A*sqrt(a)*sqrt(e)*x**(3/2)*gamma(3/4)*hyper((-1/2, 3/4), (7/4,), b*x**2*exp_polar(I*pi)/a)/(2*gamma(7/4)) + B*
sqrt(a)*sqrt(e)*x**(7/2)*gamma(7/4)*hyper((-1/2, 7/4), (11/4,), b*x**2*exp_polar(I*pi)/a)/(2*gamma(11/4))

Maxima [F]

\[ \int \sqrt {e x} \sqrt {a+b x^2} \left (A+B x^2\right ) \, dx=\int { {\left (B x^{2} + A\right )} \sqrt {b x^{2} + a} \sqrt {e x} \,d x } \]

[In]

integrate((B*x^2+A)*(e*x)^(1/2)*(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*sqrt(b*x^2 + a)*sqrt(e*x), x)

Giac [F]

\[ \int \sqrt {e x} \sqrt {a+b x^2} \left (A+B x^2\right ) \, dx=\int { {\left (B x^{2} + A\right )} \sqrt {b x^{2} + a} \sqrt {e x} \,d x } \]

[In]

integrate((B*x^2+A)*(e*x)^(1/2)*(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*sqrt(b*x^2 + a)*sqrt(e*x), x)

Mupad [F(-1)]

Timed out. \[ \int \sqrt {e x} \sqrt {a+b x^2} \left (A+B x^2\right ) \, dx=\int \left (B\,x^2+A\right )\,\sqrt {e\,x}\,\sqrt {b\,x^2+a} \,d x \]

[In]

int((A + B*x^2)*(e*x)^(1/2)*(a + b*x^2)^(1/2),x)

[Out]

int((A + B*x^2)*(e*x)^(1/2)*(a + b*x^2)^(1/2), x)